Stieltjes Sturm–Liouville equations: Eigenvalue dependence on problem parameters
نویسندگان
چکیده
منابع مشابه
Solution Dependence on Problem Parameters for Initial-value Problems Associated with the Stieltjes Sturm-liouville Equations
We examine properties of solutions to a 2n-dimensional Stieltjes Sturm-Liouville initial-value problem. Existence and uniqueness of a solution has been previously proven, but we present a proof in order to establish properties of boundedness, bounded variation, and continuity. These properties are then used to prove that the solutions depend continuously on the coefficients and on the initial c...
متن کاملElliptic Equations, Principal Eigenvalue and Dependence on the Domain
We consider a general second order uniformly elliptic diierential operator L and also the set of all open sets (not neccessarily smooth) in the unit ball of I R n. We deene a metric d in this set (up to an equivalence relation) that makes the space ((= ; d) a complete metric space. We show that the principal eigenvalue and eigenfunction of L are continuous with the metric d. Similar results are...
متن کاملOn the nonnegative inverse eigenvalue problem of traditional matrices
In this paper, at first for a given set of real or complex numbers $sigma$ with nonnegative summation, we introduce some special conditions that with them there is no nonnegative tridiagonal matrix in which $sigma$ is its spectrum. In continue we present some conditions for existence such nonnegative tridiagonal matrices.
متن کاملDependence on Parameters for the Dirichlet Problem with Superlinear Nonlinearities
The nonlinear second order differential equation d dt h(t, x′(t)) + g(t, x(t)) = 0, t ∈ [0, T ] a.e. x′(0) = x′(T ) = 0 with superlinear function g is investigated. Based on dual variational method the existence of solution is proved. Dependence on parameters and approximation method are also presented.
متن کاملSome results on the symmetric doubly stochastic inverse eigenvalue problem
The symmetric doubly stochastic inverse eigenvalue problem (hereafter SDIEP) is to determine the necessary and sufficient conditions for an $n$-tuple $sigma=(1,lambda_{2},lambda_{3},ldots,lambda_{n})in mathbb{R}^{n}$ with $|lambda_{i}|leq 1,~i=1,2,ldots,n$, to be the spectrum of an $ntimes n$ symmetric doubly stochastic matrix $A$. If there exists an $ntimes n$ symmetric doubly stochastic ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Mathematical Analysis and Applications
سال: 2008
ISSN: 0022-247X
DOI: 10.1016/j.jmaa.2007.04.074